2015-05-27
원자력 및 양자공학과에서는 아래와
같이 "The 2nd Annual KAIST NQE Distinguished Lecture
Series" 를 개최하오니 많은 관심과 참여 부탁드립니다.
1. 강연 제목: Predictive
Modeling: Combining Computations with Experiments to obtain Optimally Predicted
Results with Reduced Uncertainties
2. 일시: 2015년 6월 2일(화) 오후 4:30
3. 장소: 장영신학생회관(N13-1) 1층 울림홀(Rm.101)
4. 강연자 : Dr. Dan
Gabriel Cacuci, SmartState Endowed Chair Professor
University
of South Carolina, USA.
• South Carolina’s SmartState Endowed Chair Professor in Advanced Materials and
Nuclear Power and Director of the Center of Economic Excellence in Nuclear
Science and Energy, University of South Carolina (USC), USA
• Editor, Nuclear Science and Engineering (a research journal of the
American Nuclear Society), and The Handbook of Nuclear Engineering
• Principal Research Fellow, Department of Earth Sciences and
Engineering, Imperial College London, UK
5. Abstract:
Discrepancies observed in practice between experimental and computational
results provide the basic motivation for performing quantitative model
verification, validation, and model calibration through data assimilation.
Furthermore, numerical simulations of ever increasing fidelity and complexity demand
a broad multidisciplinary research on scalable algorithms and models, including
hardware, architecture, system software, libraries, workflows, performance,
verification, and application software. “Predictive modeling”incorporates all of
these activities, aiming at predicting “best-estimate”values for model responses and parameters, along with reduced
predicted uncertainties for these quantities.
This
Lecture will present the principles underlying an original (2014) methodology
for predictive modeling of large-scale nonlinear coupled multi-physics systems.
Illustrative applications of this new methodology to large scale (millions of
model parameters) reactor physics and thermal-hydraulics systems will also be
highlighted, demonstrating the reduction in the predicted uncertainties for
various fundamental design and operational parameters (e.g., effective
multiplication factor, reaction rates, time-dependent void fractions). The
Lecture will also sketch the principles underlying a newly (2015) developed generalization
of the “adjoint sensitivity
analysis methodology” for nonlinear systems, originally
developed by the author (1981) and widely applied since then (e.g., earth and
atmospheric sciences, econometrics). This generalization enables the exact and
most efficient computation of arbitrarily high-order response sensitivities to
a large number of model parameters. In turn, the availability of such
high-order sensitivities enables the computation of high-order moments (e.g.,
skewness and kurtosis) of model response distributions, which subsequently
enables the quantification of non-Gaussian features (asymmetries, “long tails” characterizing rare events,
etc.) of model results.
The
Lecture will conclude by highlighting the main directions of ongoing applications
(e.g., design of a small fast LBE-cooled reactor, proliferation detection) and
ongoing research aimed at extending the author’s predictive modeling methodology, from second to
fourth-order, incorporating computational and experimental covariance, skewness
and kurtosis information. Successful completion of these ongoing developments
is expected to provide a paradigm-changing methodology for predicting “best-quantified” design and operational
parameters for characterizing the features of large-scale non-linear systems.
* 본 강연은 영어로 진행됩니다.